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ABSTRACT 

This paper Is an introduction to the method of characteristics 

for solving problems of one-dimenaional, non-steady gas flow.    By follow- 

ing Riemann's approach, it can be shown that wave elements propagate along 

certain lines which are identical with characteristics lines.    Con- 

struction of these lines in the position-time plane gives a clear picture 

of the motion of waves in ducts»    Several new techniques for obtaining 

solutions of special problems are suggested 
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INTRODUCTION 

Problems in the field of non-steady compressible flow ere becom- 

ing increasingly importt t. As long es the flow may be treated as one-dimen- 

sional, the method of characteristics is a most useful tool to obtain 

gmphical solutions to ^iven problems. One objection to this method occa- 

sionally raised is that "it is a mechanici;! procedure where the physical 

picture may be completely lost". This has not been the experience of the 

writers, who feel that keeping the pt^sicfcl side in mind makes applica- 

tion of the method considerably easier. This difference of view may, perhaps, 

be explained by pointing out two slightly diff«rerit interpretations of the 

method. 

Mathematically, the problem is to solve certain partial differen- 

tial equations. These equations have associated with them two families of 

curves, the characteristics. Through every point in the position-time plane 

two such lines may be drawn. The network of these lines forming the so- 

called characterietics diagram, covers the entire plane and its pattern is 

determined by the boundary conditions. A change of conditions at some 

region of the boundary affects the diagram only along characteristics lines 

starting at that region. In any given case, the cliaracteristics diagram is 

constructed according to certain rules end the values of flow velocity and 

state parameters are obtained from the diagram. 

- 2 - 
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The other possibility is to derive the propagation laws for 

wave elements directly from the fundamental relations. It can be shown 

that these wave elements travel along certain paths in the position- 

time plane which are identical with charucteristic lines. Diagrams 

constructed in.this manner will be called wave diagrams. Values of 

flow velocities and state parameters are obtained from the diagram in 

the same way as from a characteristics diagram and, the result, of 

course, is the same in both cases. Both procedures are used in the 

literature1'2'3^'5'6. 

In either case, the method allows investigation of non-steady, 

one-dimensional flow, giving flow velocities and state parameters as 

functions of time and position. It is possible to treat flows in ducts 

of variable cross-section provided they may be considered one-dimensional 

with sufficient accuracy. Experiments have shown that in certain cases 

the flow pattern in the immediate vicinity of an open end may not be 

considered one-dimensional. Therefore, at such points, velocity deter- 

minations may not lead to significant results. This report being of an 

introductory nature, is limited to isentropic flow and, therefore, does 

not treat heat addition or very strong shock waves. The method may be 

extended to cover such cases but the procedures then become considerably 

more complicated. 

-3 - 

**     ' 
y 

^—m 



CORNELL AERONAUTICAL LABORATORY 
Buffalo, Nev York 

Report DD-420-A-12 

Although the principles of the method presented in this paper are 

not new, the need was felt for a description stressing more the practical 

side than was done in pravious presentntionB» No claim for originality 

is made but it li believed thnt some of the procedures described are new. 

The method as described in this paper has been found to be a 

useful tool for preliminary investigations of problems of non-steady gas 

flow since a general picture of the wave motion is readily obtained. 

For ti  more refined treiitnent it is ne^eesary that more elaborete proce- 

dures be used which include non-isentropic flow tnd continuous chenget. 

of cross section. These techniques will be reviewed in a future paper. 

o 
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LIST OF SYMB015 
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Particle velocity 

Velocity of sound 

Velocity of wave propanution 

Pressure 

Density 

Distance coordinate 

Time 

Arbitrary reference value of a 

Arbitrary reference value of p 

Arbitrary reference value of length 

x 

to 
a0t 

u 

*e 
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ac 
17 

! 

Velocity of sound outside the tube (non-dimensional) 

V + ß A. 

V -ß k 

Change of A across a wave element 
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Chimf:© of U across a wave  element 

Function defined by equation  (18) 

CroES-sectional area of tube 

Piston velocity (non-dimensional) 

Rutio of  specific heats 

2 
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1  ♦ 1 

■ 

T-T 
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I.     L aKSIffii V^tS SI PHI! AMFLlTUDf: 

A problem in non-steticiy ^as flow is solved once the stiite per- 

amett-rs and flow velocity are known at tny point es functions of time. 

All studies in this paper relate to one-dimensional flow and ieentropic 

Stute transformations,    ii is sufficient tc find the solution for the 

flow velocity u and one  stt te paraMter since other state paremeters may 

then be obtained by means of the ieentropic flow relat„ons.    Instec-d of 

pressure p or density      ö    , it is more convenient to select the velocity 

of sound e as the state parameter where a -y 1 "TT and     i       is the 

ratio of specific heats.    The derivation of the relations leaning to the 
7 

construction of wave .diagram:" follows the general approach of Riemann . 

In the Appendix, en outline is given for the mathematical basis of the 

method of characteristics as applied to non-steady,  one-dimensional 

flow. 

g 
The motion of the gas is governed    by the equation of contin- 

uity  (1),  the equation of motion  (2) end the condition of isentropic 

flow (3) 

<?t ^x        o* (1) 

- 7 - 
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^u   , „ du _     i  dP   . a« j9 
9   d* 

4d    .  tri   rf 
a              *        9 

(2) 

(3) 

Multiplying equation (l) by - •%- and adding equations (1) and (2) gives 

By using equation (3)» ^  nay be eliminated from this equation, yielding- 

ing 

TT (u±-ri0) + (u±a)-37(u±fH0) ■• 0 U) 

It is convenient at this point to introduce the diraensionless 

variables 

00* 

(positive to the right)  BHl 

where a0 ahd L0 are arbitrary reference values of the velocity of sound and 

length, respectively.    In diraensionless form, equation (4) becomes 

- 8 - 
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Defining 

and 

P 

Q 

ß 

U + ^A 

U - ßA 

JL 
y-i 

the last relation representt the two equations 

und 

dQ   . 

(U + A) 

^^4f 

U») 

(A") 

Equations (4) are wave equetior.s whic'n indicate that the quantities P and 

Q propagrte with velocities W = U + A tnd W = U - A, respectively.  Here, 

W = -5-  is the dimenfionlest form of the propagation velocity w. As long 

ae Ü is smaller than A, it is apparent that •quatlon (A') represeritt waves 

travelling from left to right while •quation (4") epreser.ts wavee travel- 

ling from right to left. In genersl, waves travelling in both directions 

are present at the same time. According to equation (.♦')» a value of P 

remains unchanged for an observer who moves with the wav? from left to 

right with a velocity U + A, whether or not he crosses wt,vee travelling 

from right to left.  However, depending on how the wave was created, each 

part of it has its own value of P propagating with its own characteristic 

velocity Ü + A.   Similarly, values of Q remain constant for an observer 

moving with a velocity U - A, whether or not he crosses waves travelling 

- 9 - 
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from left to rigrt.    Therefore,  if there are no waves travelling from 

left to right in a certain region, P ie constent »ithin that region. 

Similarly, Q is constant within a region where there are no waves travel- 

ling from right to left. 

In the absence of a general solution for equations  (A') and 

(A"),  the following procedure is used to solve £iven problems.    Each 

wave is approximated by a number of wave elements in thi form of steps 

each of which is characterized by ite values of A end U (Fig.  1).    The 

values of U and A change from one element to the next and the increments 

will be denoted by     A U    and        A A , 

AA * A;    Aj.| (5) 

In the  0, f*  -plane,   the path of each element may be drawn as 

a line, the inclination of which corresponds to the wave velocity--7- = W 
d 7 

(Fig.  2),        Each line is labelled by its strength        A A .    The value 

of       AÜ     is not required because of the relation between   AA   and     AU 

to be derived below.        These lines divide the field lato a number of 

regions which for easy identification will be numbered 1, 2,  3, etc. 

iiuch plots will be referred to as wave diagrams.    All lines in Fig.  2 

represent elementt   of a wave travelling from left to right and, therefore, 

all regions have the tame value of Q because of the absence of waves mov- 

ing from right to left.    It then follows from the definition of Q that 

- 10 - 
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' 

AU    = ^ ÄA (6>) 

This relates the increments of U and A across s wave travelling from 

left to right.    However,  each element of this wave has e different 

value of P 

ff^U.t^A,,     P2-üz+ß^t      %--^*ß^,   

and the propagation velocity W = rJ + A is different for each element. 

Similar relationr hold for the  case in which only waves travel- 

ling from right to left are present.    Then, P is conattnt and Q has different 

values for each element of the wave.    The definition of P yields 

AU=  -^AA (6") 

which relates the increments of U and A across a wtve travelling from right 

to left. 

In order to study the intersection of two waves travelling in 

opposite directions, consider one element of each having   . strength     AA 

end     AAj     ,    respectively, before intersection  (Fig.  3)..        After inter- 
i 

section, let them assume the values      AA    and      AA^      ,    Regions 1 and 3 

are separated by a wave travelling from right to left across which P is 

constant, therefore, Pj^ = Py     Similarly, P2 = P^, Qi = Q2» and Q3 = Q^. 

- 11 - 
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I 
From these conditions, It follows that Lk-    A A and AAj^ = AAi .  Ttos 

means that the strength of a wave element is unalterea by intersection 

with other elements.   However, xts speed is changed by intersection. 

For example, the wave marked  AA in Fig. 3 moves with a speed 

W, = U^ + k\    while after interbection its velocity is given by 

Wj *  (U, -^ AA,) ♦ (A, * AA,)  • U, + A, + {\-ß)  AA, 

A positive velue of  Ad corresponds to a wave for which the 

velocity of sound, or the density, or the pressure after phsssge of the 

wave is higher than before. This is called a compression wave. Simi- 

larly, a negative value of  A A corresponds to an expansion wave. 

II  PROPAÜATJUN VELOCITY OF COMPRESSION WAVES 

It was shown in Section I thßt wave elements travel with a 

velocity w = u - a.  Imagine that smtl^ disturbences are created in 

some manner and propagate through the gas in a tube. The velocity of 

sound at a point after the first element of the wave has passed will 

be higher or lower depending upon whether the wave is a compreseion or 

an expanrion wave.  In the case of a compreseion wave, each wave ele- 

ment travels in a medium which has been compressed by the previous 

elements and will, therefore, move with a velocity which is greater than 

that of the preceding one. Successive wave elements may, therefore, over 

take each other forming a single element of combined strength (shock wave). 

- 12 - 
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In the c&se of un expansion wave, each element eflects a pres- 

sure drop and, the following waves travel slower- Therefore, successive 

elements fan out and no shock is formea. 

If a shock wave is formed,  it is known tUit the flow is no 

longer isentropic and the sttto parameters on both sides of the shock, and 

3 9 
the propagation velocity ere then related by the Rankine- Hugoniot equations 

It,  therefore,  appears thut the method described in Section I br^eks down as 

soon as shock wtves occur, thrt is when compression wave elements combine. 

However,  for shocks of moderate strength,   the iMntroplo flow relations give 

values of the state parameters that agree very closely with those obtfilned 

from the Rankine-hugoniot equations.      On the other hand, the deviation of 
■i 

the propagation velocity of shock waves from the value    u - a obtained for 

isentropic flow ii3 appreciable even for weak shocks.    It is possible to 

include shock waves of moderate strength in the wave diagram by  still treat- 

ing changes of state across the wave as isentropic (equations 6) but using 

the relation for the propagation velociLy  of shock waves which is given by 

"" "•'VT" h=?L (7) 

4-<i 

The subscripts 1 and 2 refer to the conditions on both sides of the shock, 

and the _ sign indicates the direction of motion.    Introducing the isen- 

tropic relations, equation (7) may le written as 

- 13 - 
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W »  U, ± A, 

which is in the non-dimensional form used in Section I, end again with 

o 
ß- ~\      Writing A2 - Aj +       A A this becomes 

W = U, ± A, wjo^- 
♦ ^r - •[('^f 

which may be expanded into a series,    Retaining only the first three 

terms leads to 

W ' U, t A, ['♦* 
AA 
A. ^-i-)-(^f (8) 

where       X ■ 1 •»• 1 
i - I 

Since even weak elements of a compression wave may be con- 

sidered as a combination of still weaker ones, equation (3) should be 

used for all compression wave elements. It is obvious thet this equation 

approaches the previous relation W ^ U - A for very weak waves (  AA—>0). 

In many cases the third term of the series may be neglected. 

- u- 
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For increasing strength of the shock waves, the assumption of 

isentropic changes of state leads to errors which eventually will exceed 

the limits of the desired accuracy. In general, shock waves with values 

P2 
of   AA up to 0*1A,  corresponding to a pressure retio — =2.5 

PI 
(for i  = 1.^) may be treated in the djscribed way. For stronger waves, 

where the isentropic relations do not hola with sufficient accuracy, 

methods have also been developed^ but these will not be treoted in this 

paper. 

As pointed out before, expensicn wavee do not form shocks and 

the relation for the propagation velocity W = U t A derived in Section I 

should be used throughout. 

III. BQUNDAKY CÜNLITIONS AND WAVE REFLECTIONS 

Once the initial conditions are given, the methods described in 

Sections I and II allow determination or  the state of the gas at any point 

or any time inside a tube of constant cross section. 

When the w. vei reoch  a discontinuity, such as the end of a 

tube or a change of cross section, wave reflections must occur in order to 

satisfy the boundary conditions. 

- 15 - 
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1.    Tube closed by & moving piston 

If a tube Is closed by a piston moving with a velocity V, the 

gas adjacent to the piston must move with the same velocity  so that at the 

boundary U = V»    Fig» U shews a wave, which may be a Tompreseion or an 

expaneion wave,  being reflected from a piston«    In region 1 ahead of the 

wave Hi - V..    From equations  (5) and (6) one obtains for region 2 

A2 = Aj +   A A 

and u2 = v ^ ^ AA 

region 3 

and 

Denoting the strength of the reflected wave by   A A'   then for 

A3 = A2 + AAU • 

U3 = V = U2 - ^AAS  = V + ^AA - ;0AA 

and, therefore AA = AA' (9) 

This shows that the reflectrd wave has the same strength and sign as the 

incident wave. 

2o    Closed end of a tube 

■ 

This is merely a special case of a moving piston with V = 0, 

so that the boundary condition becomes U = 0 and for the reflected wave 

the same relation   AA a   AA    applies. 

- 16 
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3. Open end of a tube 

At an open end of u tube several cases of wave reflection are 

possible. 

The conditions before arrival of a wave element are known but 

In some cases it is not possible to anticipate the type of flow after re- 

flection.    In such cases,  one can only assume a certain flow and then 

check whether the results are in agreement with the assumption.. 

In order to calculate wave rellections at an open end the 

v&locity of sound there must be given,     If the state of the outflowing ges 

is isentropically related to conditions outside the tube,  then the 

corresponding velocity of sound at the end is known.    If this condition is 

not fulfilled the velocity of sound at the open end is not known and some 

reasonable value has to be assumed.    The velocity of sound at the open end, 

in non-dimensional form, will be denoted by  ke.    As an example,  consider 

the outflow of gas from a container through a tube to the open atmosphere. 

If the pressure in the container was reached by isentropic compression from 

ntmoepheric pressure,  then Ae is equal to the velocity of sound in the open 

atmosphere.    If the pressure was reached in any other w«:y, an assumption 

for Ae has to be made, for instarce the value of the sound velocity obtained 

if the gas were expanded isentropically from container to atmospheric 

pressure.    All relations will be derived with the aid of Fig. A.    With 

- 17 - 
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configuretions which do not allow the flow to become supersonic at the 

open end only two types of outflow are possible:  (a) U3 < A3 and (b) 

U3 = A3« 

(a) Outflow with tU3  < A3    * 

As long as the outflow velocity at the open end is less than the local 

velocity of sound, the pressure is equal to that prevailing in the ex- 

ternal medium.    Since at that pressure the velocity of sound ie equal to 

Ae,  the wave must be reflected so that the boundary condition A3 = Ae 

(Fig. 4)  is meintsinedo    The following relations may be written. 

A2 = A^     *     A A 

and A, = Ae = A2    ♦    AA" = Ai ■♦      AA    +    AA 

Therefore, A A1  = AA -f Ae     Ai (10) 

If A^ ■ Ae      which is the most common case, a wave is reflected with un- 

altered strength but e compression wave is changed into an expansion 

wave and vice versa.        Once     A A'   lias been found,  U3 may be calculated 

and checked for the condition Ltetthe outflow velocity does not exceed A3C 

♦The upper sign for    U3     refers to the right end of the tube, and the 
lower to the left end since there     U3<0    for outflow» 

- 18 - 
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(b)    Outflow with t U3 = A3 

As before, 

A2 = Al +     A A 

u2 = ül -   ^ AA 

and   A3 = A2 +     A A'     = A1 +     ÄA +     AA' 

u3 = u2 +   ß *&   = ul t ^   (   AA -  AA'   ) 

The boundary condition t Ü3 = A3 leads to t Ul   +)9   (     A A 

A]^   +    AA +    A A'     and, therefore, 

AA'   ) = 

( ß   -1)      AA t Ul - Al 

ß + 1 AA'     = (ID 

where the upper sign refers to the right end and the lower to the left end 

of the tube. 

(c)    Inflow 

A pressure gradient is required to produce inflow und,  therefore the pres- 

sure at the open end must be less than the outside pressure.    This 
8,9 

pressure drop may be calculated from the energy equation     which may be 

written as 

2       1 2 2 
A3   +  1   U3    = Ae (12) 

ß 
In addition, the strength of the reflected wave must be such that the 

increments for U and A satisfy equations (5) und (6). 

U3 - U2 = + )9   (A3 - A2) 

- 19 - 
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where, «gain, the upper sign refers to the right end.    The boundary condi- 

tion (12) and the last relation may be combined and aolved for A3 and U3. 

Coneidering the right end only,  the solution of the quadratic equation 

for U3 becomes 

{ß A2 » BJ *~ß  V(l +1  )  A«2 - 7"  ( £ A2 + U2)2 

», - ^ + 1 

Only one of the two solutions ha» pbyslcal significance.      Since the first 

term in the numerator is always positive, and, for Inflow at the right end, 

U3 must be negative, the minus sign in front of the root must be used. 

Similar considerations may be applied to the left end. 

For computing purposes, the most convenient method is to first solve 

for A3 which leads to 

A,» jpfj ^    . (13) 

The next step is to calculate the strength of the reflecled wave 

A A'      = A3 - A2 (U) 

and finally 

U3     = Ü2 ;   ^ AA* (15) 

In equations (13) and (15) the upper sign always refers to the right end and 

the lower to the left end of the tube. As a check, the result for U3 must 

correspond to inflow. 

- 20 - 
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4.  Change of cross section 

If the cross Faction of the tube varies, the state of the flow- 

ing gas also changes. Problems of this type may be treated io two different 

ways. First, it is possible to include continuous changes of cross 

section in the fundamental continuity equation (1) and then derive the 

5,6 
relations governing the characteristics network ' • This is a direct 

approach but the resulting procedures become rather complicated. 

Second, continuous changes of cross section may be approximated 

by discrete steps as was done for the flow parameters.  In this way, the 

construction of the wave diagram remains unaltered, and only certain 

boundary conditions at those points where the cross section changes have 

to be taken into account. 

When a wave reaches a change of cross section, it will be 

partly reflected and partly transmitted. The strengths of the incident, 

reflected and transmitted waves will be denoted by  A A,   AAJ 

end A A" , respectively» 

The symbol S1  will be used for the cross stctional area of 

that part of the duct in which the incident and reflected waves travel, 

while S"  will be written for the cross sectional area of the region 

through which the transmitted wave travels (Fig. 5)» 

There is steady flow connecting regions 1 and 4 and also 3 and 5. 

The two conditions which must be fulfilled in each case are continuity of 

- 21 - 
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mass flow and conservation of energy,    These may be written as 

S ° ki       » Ü! = S"  » ku
P    ' \ (16) 

and Uj2 + ^   Ai2 = U^    + ß  kA
2 (17) 

and equivelent relations for regions 3 and 5. 

The problem to be solved is the following: given A^,  Uj tnd 

u n 
A,  find A2» 1'2» A3, U^,  A^, U^,  A5, Ü5,       A A    and A A  .      These 

ere ten unknowns and the same number of relations  is, therefore,  re- 

quired.    Going from region 1 to region 2, equations (5)  end (6)  give 

two relations.    Similarly,  four additional equations are obtuinod by going 

from 2 to 5 and from A to 5-     Equations (16) and  (17) snd the equivalent 

ralations connecting regions 3 and b complete the  syttem of equations. 

Analytical solution of the system is very tedious and several graphical 

methods have been described in the literature    *   ■    A different numerical 

approach, however,  has been found to be more satisfactoryu 

Equations  (16) and  (17)  contain U^ and A^ ue the only  unknowns. 

The following symbol is introduced 

*2 2       J_     2 
A     =    A   +    ^   U 

so that equation (17) becomes 

Ax* = A^ (17') 
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From equations (17) and (17') 

■! -    ß A! ' ß A\ 

and %' =    ß  kk '  ß 4 
If these fe introduced into equation (16),  the quantities may 

be retrranged to 

(^•1^)1.   (^) zß w ih)' 
and with the new function 

•Wh-^f 
equation  (16)  becomes 

(18) 

H-  *r{f) (19) 

In order to evulurte K from equation  (13),  the value of A/A   must be known. 

From the definition of A 

b- 
l**{!) 

(20) 

Figure 6 shows a plot of K as function of A/A    where the progress 
* 

of the calculation is also indicated..    First,  compute Ai/Ai    from equation 

(20) and find K^ and K^. from the graph and equation (19) c    K^ then corresponds 

to a value of kjjk,    and since A^ = A^ , one obtains A^ end,  egain from 

equation (20),  also U^.       One might think that for certain veluet- of 
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^f- the value of K/  could exceed the possible maximum (Fig. 6)0    This case, 
B 

however, will not occur because es is easily  shown, the maximum value of 

K corresponds to e Mach number of one which may only occur at the narrowest 

section of e duct.,    Since supersonic flows will not be considered here, 

only the right branch of the curve is important.    For practical purposes, 

numerical vtlues of K are given in Table 1 for      i    a l.^„ 

The relations connecting the Q and A values in regions 3 and 5 

are the same as for regions 1 and A but, none of the values are known, 

If      A A'  were known,  the computation could proceed in the seme way as 

above and finally A A    would be 1'ourd by applying equations (5) nnd  (6) 

to regions 2 and 3-      The v&iues for region 2 are calculatea in the usual 

manner from those in region lane3     Ai    The analytical approach to the 

problem leads to very cumboreome relations»     It was found more convenient 

to guess the value of AA  , and then calculate the values for regions 

3 and 5 in the same way as for regions 1 and 4      Equations  (5) and (6) 

will give two values of   AA    from the difference of the U and A values 

respectively,  end these two values must agree within the accuracy desired. 
n* 

If they do not agree, the procedure is repeated with a ^ew guess of   AA . 

♦ A number of cases were calculated and it was found that the strength of 
the transmitted and reflected waves does not depend very much on the 
value of Ai<. From these results a graph was prepared to be used as an 
aid for making the first guess of  A^"  This is shown in Fig. 7 where 
the ratio AA"/ AA is plotted as function of SVS9 for different values 
of Ui» 
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5. Interface between two gagee 

In all cöbes treated co far, one gas only was involved in the 

flow end all Charlies of state were iöentropic The problem will now be 

generalized to the flow of two gusev  separated by a plane interface. The 

necessary condition for the interface to exist is that both gas velocity 

and gas pressure on each side be equal  Changes of s.ute within each 

gas will atill be treated as isentropic  A wave element arriving at the 

interface will be partly transmitted and partly reflected, and at the 

sajne time the velocity of the interface will be changed. 

In Fig. 8, the position of the interface is indicated by e dotted 

line„ Interface, incident, reflected and transmitted waves divide the area 

into five regions marked 1 to 5. In the analysis of the wave reflections 

it is convenient to use actual state parameters and to introduce the 

usual non-dimensional variables in the final formulas only. With refer- 

ence to Fig. 8., the boundary conditions may be written 

and 

ui = u^ 

U3 = U5 

PI ■ P4. 

P3 = P$. 
(21) 

One may imagine the gases in regions 1 and A to be isentropically compressed 

from some arbitrary pressure p0 at which the corresponding velocities of 

sound are a^g and a,Q, respectively, 

- 25 - 

i friii m&ii»m mmmtm 
^mm 

s 



CORNELL AERONAUTICAL LABORATORY 
Buffalo, New York 

Report DD-4^0-A-12 

and 

Po ^   a^O' 

where the ratio of specific heats T   refers to the gas in which the re- 

flected wave travels while   t"    refers to the gae on the other side of 

the interface. 

The pressures in regions 3 «nd 5 niay also be expressed in 

terms of the ;.ound velocities taking into account the strength of the 

wave elements, 

» 111 
21 - ( al ^       A a +       Ae w'-i 
Po '   V a10 ) 

and fiU   r*4t     ii"^ 
Po '   ^     a40 / 

If the incident prest-ure wave travels from left to right one may write 

for the velocities 

2 
uj = Uj^ + yTTj    ( A a -       A a  ) 

and U5 = u^ + -jfq Aa" 

Applying the boundary conditions (21) the pressure and velocity 

relations lead to the following two equations for  A a" and   A a" 

- 26 • 
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to    ♦ -?—   A a 
f'-l 

Aa 
y-i r-i t'-i 

»1 +      A«   +     AA'X-JTI /H+      A»  ^7q 

(22) 

P    ■( •i ' ^       H ' 

In this general form, the equations can be solved only after 

numerical values have been introduced. 

Since, generally, the wave strength        A A is very small com- 

pared to the sound velocity, the second equation  (22) may be expanded 

into a series of which the linear terms only are retained,    It is then 

possible to solve the equations with the results 

AA Al  1" * A4 1' 
AA Al f + 44 f 

A A"        2 A4 f y"_| 
(22') 

A A      " Ait"   + A^Y' f'-l 

where t>» values have been made dimensionless by dividing them by an ar- 

bitrary reference velocity of sound,. Although the above relations were 

derived for a wave travelling from left to right they apply in unchanged 

form to waves travelling from right to left 

The above treatment includes the special case of two masses of 

the same gas but of different temperatures moving together. Thus / equals 

i*    and equations (22*) reduce to 

AA'    A1 _ A4 A A" m     2A4 

AA Ai+ A4 
and AA 
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IV PiaSICAL CONDITIONS 

A wuve diagnun can be drawn for specific cases only when the 

plysictl phenomena which create non-steudy flow are known. Most 

probleme met in practice will be covered by one of the cases described 

below or by a combination of some of them Some considert tion is also 

given to the treatment of strong expansion waves since expansion shock 

waves cannot exist 

1. NLovlng pigton 

It was noted in Section III that for a tube closed by t. piston 

moving with a velocity V, uhe gas adjacent to tha piston must move with the 

same velocity so that ct the boundary V : 0, A sudden c-hRnge of V will 

cause a wave to be emitted from the piston so that   AU =  &V and the 

strength of the wave is given by 

ÄA r ^ -L AU 
ß 

in accordance with equations (6)   If V varies continuously with time, 

suitable discontinuous steps  A V must be selected to approximate the 

motion of the piston» At the instant of each step, a wrve of correspond- 

ing strength A A is emitted 

2, Sudden removal of a partition 

A very general type of non-steady flow ia produced by the 

sudden removal of a partition separating two gases at different preBSuree 
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and temperatures.    This creutesm interface which is assumed to remain 

plane. The boundary condition which must then be fulfilled is that 

pressures and velocities be equal on both sides of the interface.    It 

is clear that the removal of the partition must create an expansion wave 

which advances into the region of higher pressure and a compression wave 

which moves into the region of lower pressure.    The strengths of these 

two waves will be derived below.    Subscripts refer to the regions as 

shown in Fig. 9. 

The condition in regions 1 and 2 are ^iven and assuming that 

there is no heat exchange across the interface,  the isentropic relations 

m<iy be applied to each gas individually, as follows, 

zr 

P3       ^ a3 ' 

and £2   _   /igN'"-' 
= (*) PA 

where the ratios of specific heats are     1'    and     /"     ,  respectively. 

The additional boundary condition   is 

P3   =     P^ 

Introducing the strength of the waves,  these equations may be 

combined to give a relation between      A ai and       A B.2 

pi-l^r^   =p2 (^V^ (23) 
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The velocity relations (6) give 

U3 = ui - ft Aa^ 

and u4 = u2 ■*   ß* ^2 ° 

With the boundory conditions 

U! = U2 

and u^ = i^„ 

these may be combined to 

p   &&1 = -     ß    LB.2 (24) 

For given numerical values equations (?3) ^nd (2^) may be 

solved for      A a^ and     Aa2o       In the special case of     i'-   f"     where, 

however,  the two gases need not be the  same, one also has  ß* s ß" and 

from equation (2A) A a^ - -    Aa2o    The actual vtilue of       A a may then 

be found from equation (23).. 

One may  specialize the proble:o still furthor by assuming the seme 

gas on both sides of the partition and isentropic relation between the 

states 1 and 2.    Then 

PI     / ^1 VM 
P2 'V a2 y 

It is obvious that the states of the gas in regions 3 and ^ must become 

identical since they are also related to the original states by the 

isentropic law «nd must both have the same pressure. In this special case, 
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an interface is not formed and equation (23) simplifies to 

n - ^2 
A a2 - -  A a^ =   p 

If an interface is formed at an open end of a tube, the two waves ere 

still calculated as before. The one directed outward is immediately re- 

flected as described in Section III and combines with the other one to 

form a single wave advancing into the tube 

# 

3.    Heat addition to gas flow 

If heat is added to the flowing gas the original assumption of 

isentropic flow does not hold any longer and equation  (3) must be re- 

placed by the energy equation.    The graphical procedures then become 

considerably more complicated and will not be treated  here   , 

At times,it may be possible to overcome the difficulties in- 

troduced by heat addition by making simplifying assumptions about the 

10 
process    „    For instance,  combustioti may be assumed to ttke place 

instantaneously»    If this is done, an instantaneous change of stite of 

the gas takes place in a given volume end this case then becomes 

identical with the one of a suddenly removed partition treated before.. 

The assumption of instantaneous combustion may be Justified for high 

rates of burnir^ where constant volume combustion is approached.    For low 

rates of burning,  serious errors might be introduced by this method.    It 

may be possible,  however,  to treat these problems by making certain 

simplifying assumptions about the combustion process.    Such procedures are 

being investigated at the present time. 
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Ao Strong exppnslon waves 

It was pointed out in Section I that continuous changes of state 

must be approximated by small discontinuous steps. These correspond to 

some arbitrarily selected value of  A A which then determines the 

accuracy of the approximation.  While larger steps than these have 

p^sical "Bignificance in the case of compression waves developing into a 

shock wave, larger values could not appear in expansion waves since ex- 

pension shock waves do not occur  In Section III the strength of reflected 

and transmitted waves under various conditions was determined but the 

actual values of  A A were not considered« Often the calculated value of 

&  A corresponds to an expansion wave stronger than the arbitrary step 

size selected for the approximation of continuous changes» This case will 

occur, for instance, when a shock wave is reflected as en expansion wave 

from the open end of a tube» For such caset, the expansion wave has to 

be split up into elements of a strength not exceeding the step size 

selected,  There elements will all start from the same point of the wave 

diagram and then fan out» It makes little difference whether all elements 

are made of equal strength or not, as long as they do not exceed the 

selected step size'. 
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V- PRACTICAL APPLICATIONS 

1 ■  General remarks 

It is now possible to construct wave diagrams for the solution of 

specific problems. Two examples were selected  The first of these con- 

siders the gas oscillations created in a tube by a prescribed motion of a 

piston  The other treats the case of a wave reflected at a change of 

cross-section. • . 

lA.'fore starting to draw a WQVL; diagram, one must decide on the 

size of steps into which continuous •.banges of state will oe broken down 

Selecting a value for  A A fixer, the steps for all other veriables because 

of equations (6) and of the assumed isentropic chenges of state. In. 

general, a value of  A A equal to OoO^O will give satisfactory results and 

this value will be used in the following examples  For better approxima- 

tions a smaller value may be requirea while for a qualitative investigation 

of a procees one might choose larger valutio 

It is customary to draw compression waves as solid lines and 

expansion waves as broken lines, and to label each line with its value 

of  A A  The wave velocity W = •=£• is the slope of the lines., The 

regions formed by intersecting lines arc numbered for convenience and a 

record of the corresponding values of A, U and other quantities of interest 

are tabulated on a separate sheet 
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2. Gas waves produced by a moviu piston 

Assume a piston moving in a tube which Is open at one end as 

shown In Fig. 10c All values have been made dlmensionless, using the 

length of the tube and the velocity of sound outside the tube as refer- 

ence values. The continuous motion of the piston is shown by the full 

line and approximated by the dotted line, as follows 

r   < 0     , 

o<r<o.,5 , 

o.5<r<i    , 

i <r<i.5 , 5 = 0.3 - o.2r ,   v = -0.2, 

r >L5, 6=c        , v = o    . 

This example was chosen not for its practical value but rather to in- 

clude as many procedures as possibleu 

When t   la zero, the piston velocity suddenly changes from 

zero to 0.2 and since the change of the gas velocity adjacent to the 

piston must be equal to this, a wave must be emitted of such strength 

that It corresponds to  A U = 0o2.   Thus from equation (6V) 

A A = 0.04. since for air %    = 1.4 and ß   -  -^-r = 5- The velocity of 

this wave is 1.126, as given by equation (8). At f = 0.5» the piston 

velocity changes to zero which corresponds to the emission of an expan- 

sion wave of   A A = -0.04.. Since the step size selected was 0.02 this 

expansion wave must be split up Into two elements of  A A = -0.02 each. 
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Being expansion waves, they travel with a velocity (U + A) in their re- 

spective regions (Table 2).  In the same way, two more expansion waves 

are emitted at f* « 1 and another compression line  A A = 0.04 starts 

from T -  lo5- 

When the first compression wave reaches the open end, it is 

reflected as an expp.nsion wave hut must again be split up into small 

elements because of its strength. These reflected waves intersect the 

consecutive oncoming waves and, each time two lines intersect, their 

velocity after intersection must be calculated according to the rules in 

Sections I and II. Reference to Fig, 10 and Table 2 will make it easy 

to follow the procedure. When the waves return to the piston, they are 

then reflected again so as to satisfy the boundary conditions^  Note that 

regions 9 and 12 correspond to outflow while in regions 21 and 27 inflow 

occurs and, therefore, different relations must be applied to calculate 

the strength of the reflected waves. 

It is easily possible to follow the movements of an individual 

particle. In region 1, the velocity is zero anö therefore the particle 

remains on a line parallel to the time axis until region 2 is reached. 

There, the velocity is taken from Table 2 and a line of corresponding 

inclination is drawn. This process is continued end the dotted line 

represents the path of the particle. 
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Once the wave diagram is completed Vuble 2 gives the value of D 

and A for each regions Other variables as density or pressure may be cal- 

culated from the values of A by means of the adiabatic relations- As an 

extmple, Fig» 10a shows the variation of pressure p (relative to the 

pressure p0 outside the tube)et the piston as function of time, 

3o Reflection and transmission of a wave at a chnn^e of cross-section 

t 

Referring to Fig 5). astvune the following 

k\   =  0.980 SI   = 1 2, 

Ui = 0.400 AA - 0 C20 

It has been found very convenient to solve this type of problem 

by preparing in advance sheets with the general layout of the calculation 

so that only the numerical values had to be entered. This chart is shown 

as Figo 11. The top line contains all the quantities which must be 

known in advance. The next three liner contain quantities calculated in 

the straight forward way shown in Section III.  Then, a guess for A A" 

must be made. With the aid of Fig. 7, the first guess is  A A" - 0.0187 

and the computation proceeds until finally two values for  A A' are 

obtained. They are distinguished by the subscripts A and U depending on 

whether they were obtained from the difference of the A or U values, 

respectively. A second guess for  A A" was then made which led to the 

final result  A A» = -0.005 and   A A" r 0,019. 
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APPENDIX; 
Remarks on the CharacteriBtics Theory of Hyperbolic Differential Equations 

The following principles and theorems are merely stated without 

proof to correlate the treatment of waves as shown in Section I with the 
l9U,tU 

characteristics theory of Vyperbolic partial differential equations 

The principles are similar to those of the widely used method of solving 

problems in steady, two-dimensional,  supersonic flow by Prandtl and 

13 Busemann    „ 

From the equation of continuity (1) and of motion (2) a single 

partial differential equation of second order may be derived by introduc- 

ing a velocity potential defined by u = rf— The potential equation 
a x 

becomes 

^tt +2^ ^xt + (0v -a2) 0XX ■ 0 (25) 

where subscripts denote partial differentiations 

This equation is a special case of th«? geneial pax tial differen- 

tial equation of second order 

aZxx + 2 b Zxt + cZtt + d = 0 

witch ie called elliptic, parabolic or  hyperbolic depending on whether 
2 

Br-.-h    IB positive,  aero or negative.    If the coefficients a, b,  and c 

depend on the independent variables x and t alone, the equation is called 

linear. 
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For the potential equation (25) the expression ac-b becomes 

2   2       2    2 
( Ä.   a ) -  0v  = -a < 0 

indicating that it is hyperbolic»    Since the coefficients are not 

functions of x and t only,  the equation is altjo non-linear 

In  the case of a hyperbolic equation,  there exist two families 

of real curves in the x,  t-plene which are given by 

a dt    - 2b  ■   dx dt + c dx2 = 0 (26) 

These curves are called the characteristics or characteristic curves of 

the differential equation. The following existence theorem can be proven. 

If the vslues of the function Z and its first derivatives Zx and Zt are 

given along a line AB (Fig, 12) which must not be a characteristic, then 

the values of Z are definitely determined in the quadrangle APBQ which is 

formed by the characteristics through A and B- If the differential equa- 

tion is linear then the quadrangle APBi^ depends on the points A and B 

only, while in the case of a non-linear differential equation, it also 

depends on the values of Z and its derivatives along AB» 

A variation of the initial values of Z or its derivatives in a 

segment CB of the line AB will modify the solution only within the region 

bounded by CRPBQS while no change takes place in the remaining quadrangle 

ARCS. It thus becomes clear that variations of the initial conditions 

propagate along characteristic lines. 
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In general, it is not possible to fine? .. continuous solution of 

equation (25) which also satisfies the given boundary conditions-  However, 

an approximate step by step solution may be obtained by assuming constant 

values of  *x ^nd  *t within sufficiently small regions of the x, t-plane. 

Since a variation of conditions propagates only along characteristic lines 

as pointed out above, it follows that these regions must be bounaed by 

characEristics. PVysicallyv this raetaod of solving the differential 

equation meons replacing the non- steady flow sulution by a large number of 

small regions of steady flow, Any desired accuracy may be obtained merely 

by decreasing the size of these regions  Since two characteristic lines 

pass through each point of the x, t- plane the whole plane is covered by a 

characteristics networkc 

Using equation (26), the criaracteristics of the potential equa- 

tion (25) are given by 

2   2   2 2 
(u - a ) dt - 2u dx dt + ^y =0 

or 
dx _   + 
— - u — a 
dt 

which corresponds to the statement of Section I that values of P and Q 

propagate with a velocity of (u + a) and (u - a) respectively 0 Since u 

and a are not constant but depend on the given problem, the characte- - 

istic lines cannot be drawn in advance but must be constructed from the 

initial and boundary conditions. This is a direct consequence of the fact 

that the potential equation is non-linear. 

- 39 - 

. 
  



CORNELL AERONAUTICAL LABORATORY 
Buffalo, New York 

Report DD-^20-A-12 

It is possible to linearize equation  (25) by a change from the 

independent variables x und t to the new variables    u   and    a.      By this 

process,    (h     is transformed into a new variable   fl   and the equation be- 
U 

comes  . 

ftuu _ ÜLlif o      + ÜLLÜfrlD   US. 
4      waa 4 a '   0 

This is a linear kyperbolic equation with   a    and    u   as independent 

variables«    The char«cteristics of this equation are independent of the 

given problem and defined by 

du   -   t -2— 
da   "        ^-1 

This corresponds to equation (6) in Section I which relate the relative 

values of increments for a and u. 
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OOUOBI. äRONAüTIOAL LABGRATnRY 
Buffalo,  Hew York 

TABU I 

H^'l 
i   ■-   1.400 ß- 5 

X 1        k K 1      A 

1       "* 
t 1       A 

1       A* K 

17901 • 06671 i    .026 »0681 !   .961 .057" i    .07(3 .03 2 1 
LroL .Ünt4 |    .027 .0669   ' i   „052 ■ 5075   1 1    ,977 .036G 
.03 . }o6S 1 |    c 023 .0658 !   , - '3 . 05o7    i |   . 078 0318  1 

* 04 .C\  ,ü 1 fl    .020 oUuCi    ! i   .954 c05ul !   .079 .033u 

* 05 . \   7 \    ,050 .0664   i 1   ,955 .0556   i i    .086 .0324 

Lnj6 .06i38 i    .001 .0662   i 1   .,056 .0540    I !   .081 ,03 1 
,:ij7 .0668 I    .032 , 0660   i .967 ..0542    \ !     0^2 f. ."j r> rr     1 

Lnj3 ,JoüO | i    .0J3 , 064 / ..050 „0535    j j   „083 i\?   A    i r V'.J     'r       | 

Lnoo ,Üoo9 j    -034 ,Oü4r.    1 i     959 .0528   1 i   . 084 ft•!      ' >       1 
. ^JC    U    1 

.010 „OiüO !    .-0J5 .0642   ! .960 „0521    ! 1   „085 V)       •      I 

Lou ,0070 i   .958 ,0530    i ..061 ,-o;:i4  1 j   .986 . 02' 1   1 
Loiz .067:aJ \   .037 ■ 0636    j 1     032 .0506   ! 1   .. 0'37 .0227 
.013 ,067(5 1   ,030 , OG34    1] „0.33 .0490    1 \   „033 .0211   1 
.914 . 3670 1   ,.030 063)    i |   ,364 . 0400    | j   „080 .or, 6 
.015 0670 !   .040 - 0627    i 1     065 .C482    j Ii   .000 m o A   II ^ u it o    1 

1  „016 .0670 1     941 M,  ^  ;       ii .066 , 0473    i| i   .991 .:iu4 
,017 .0669 I   .012 -0620    ! .967 0461    j |      __ (-il-.O „0147 
.013 .0GÜ3 i   .013 „0616    ! „963 ,0455    j !   "013 ,0130 
.910 .0668 i   ..044 ,0612    j ,069 ,0446    j !   .994 .0113 
.020 ,Oüü7 1   „043 .0608    j .070 .,0436 i   .0r/5 „0095 

,021 0666 1   .046 .0603    | 1   ,0"! .0426    ! [   „OIG „0077   [ 
.922 ,0666 i   «347 ■ 0590    j 1   ,.972 .0416    i 1    .907 .0058 
„025 .0664 \   ,.048 ,0594    i „073 „0405    ! 1   .998 .0039   | 

,924 i C 663 j   .940 „0580    | !    074 ,0304    i !   ^999 .0020 
.025 .0662 .050 .0564    | c075 .038 3    I 1.000 .0000  1 
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CfiRIj'ELL ARPHAÜTIGAL LABORATfRY 
Buffalo,  New York 

TABLE ?. 

VJ = U -     I A ♦ 3   AA + 5.6    -^• for  onrnpression v.aves  (    i, >0) 

W ■ Ü * A for expansion waves  { 

If     fttvo velocity from left to  richi     I. 

■ v** ■» 

V'O   völoi from rHit to  left 

Regioi U A ^ IT IT tteginn r A W 17 

1 0.000 loOOO 1,120 AM  / -.340 j . 988 0. '74 
2 J„2Ü0 1.040 1240 -0. 840 to , iOO 0, 980 1.08 J -1.080 
o j. 1Ü0 1. J20 1,120 • 0 920 29 200 0  9Ü0 1.160 -0.886 
4 0  JOO 1. COO 1. OuO - ]   000 50 000 1 . OOL' 1. C30 -1,051 
h -J   1UU 0.980 0.880 -1 .. ,, 0 51 - 9 Oon 1.017 J„9o2 -1.138 
Ü -U .20J 0.9G0 Q,806 X       LH/ <JC -   . ■; J 1,028 0.883 -1.168 
7 ü 000 1.. 000 _ 1     -i  ■ - o 0 . 'jOO 0.960 -0,960 
G O.oOO loü20 1.320 ■ 0   720 54 . 100 0.940 1.040 -0.966 
9 0.400 loOOO 1,400 00 J -..046 

1Ü 0.2Ü0 1.000 1.200 -i> oOO 36 -, 040 i , JOo \J ,. .. Do -1.048 
11 0, oOJ 0.380 1.2C0 •0   "i- •,7 -   ] 00 0.980 0. 880 -1.131 
1Ü üo20ü loOOO 1.200 Ou .:, •; 0-997 Qj /-AZ -1.215 
iij Ü.100 0.980 1.080 .,j,- .:■ J J -. 240 1   00!J 0.760 -   ,.2-48 
14 0.200 Oo9üO 1.100 -H.  -20 40 „   J 1.000 1. JOG 
16 0.100 0,980 i.oaj ..;>   940 'r -   20'J 0.960 0   88G -1.211 
lo Ü.0O0 1 „ oou 1, 000 i . 000 1., 000 
17 0.000 0.0GO 0.960 • S  900 4<J -.285 0.977 0.818 -1.29B 
18 0.100 0.940 1.040 -0 i*C. 14 -.,140 0.988 0„848 -1.128 
10 OoOOO 0.900 0.900 -1.020 i£ - .100 0   980 0.880 -1.131 
20 -0,100 0.980 o.rau - L - i01 46 -   185 0,-997 0.812 

21 -0.16b 0.997 0.812 ■K -   340 0.988 »0,774 -1.328 

22 -0,100 0.940 0.960 -1   040 48 -. 240 0.968 ü„054 -i.SOB 
23 0. üOO 0,920 1,040 ■ 0 , 900 49 -, 200 C, 900 0.886 -1.211 
24 -0   U)ü 0,940 0.846 -1.100 no - , 2 0 o 0. 977 ö.ßlfl -1.295 

25 -O 200 0.9Ö0 0.886 -1,211 .ij 040 O.^SG 0„774 
26 -02 85 0.977 0.81B -1,295 

. .^_. . 



APPROXIMATION OF A WAVE BY FINITE STEPS 

Fig. I 

REPRESENTATION  OF WAVE  ELEMENTS IN THE 
f,   T'- PLANE. INSERT: CONSTRUCTION  OF   A 

WAVE OF GIVEN VELOCITY   W 
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Fig. 2 

-Ü™ . 



INTERSECTION OF TWO WAVE ELEMENTS 
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Fig.   3 

WAVE REFLECTIONS AT THE END OF A TUBE 
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WAVE   REFLECTION      AT A CHANGE OF  CROSS 
SECTION   OF A TUBE 
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AID FOR MAKING A FIRST GUESS   OF 
AA" 

i—r 1   ! 
i   i 

rr T" T  | 1 ! rr 
i 

1.4 
_ k 4« 43 ! 

\, 
I   i | w i 

\\\ 
■   i   i 

' 
w i i 

1.1 y \ 
2., \ w i 1   1   ' 
rv i \\\ 

i 
I   i 

\ \\\ i 

\ \ \1 
._. .j. 

!    1 11 
1 9 - ij n 1 \ \\ 1 

\ 
N 

\ 
! 

=>sM K \ 
i 

i     i : 

\n J\ ^\\: i i 

! > A\ \\v i 
I.I 7* j

i i HN.N . \\i 
V ki \\ \\\\ ~~i s 4K \v«\ i 

no^M 
n ̂ S J 1    1 

| 
■ 

1 i    i ^ Mill 1 ' '    i l i i 
1    ' 
1    1 ■ 

i i 
1 ; : 

S 
yj | 

i    1 l          l 
< 1    1 i l \\\ JV i i 

i i W wW >o i i 
^      w.-» i l V 

\\ v\ *N *v u, =       1    i 
< y \v 4N 

V 
\ 

V V > 0  , 
"0 \ \\ \ > s 0 

i V\n NIN 
V s ̂  j 

at 
\i \ K \ \ k 

\ 

\ V V ^ \ -.1 1 

N N 
k \1 1 i    i n 4 ^ \ s JN "J 1 

i 
t |   | |\ \ \ \ 1 i 

0 7 
!    ' 1 

\ Y ^ -1 

' s \ 
V 

" 

\ 
\ -> 
S -! 

ft & 

9.6 ( ).8 it 1. 4 
s'Vs' 

Fig.  7 

• «-1 



■ 

WAVE REFLECTION AT AN INTERFACE 
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V      /"INTERFACE 

FIG.     8 

CREATION OF AN INTERFACE BY REMOVAL OF A 
PARTITION   BETWEEN TWO GASES 
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Fig. 9 
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WAVE  DIAGRAM  FOR   THE  EXAMPLE  OF A PISTON 

MOVING   IN AN OPEN  TUBE 
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WAVE  DIAGRAM  FOR   THE   EXAMPLE  OF A PISTON 

MOVING  IN AN OPEN   TUBE 
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RELATIVE   PRESSURE P/P. AT THE 
PISTON   AS   FUNCTION OF TIME 
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CALCULATION     FOR WAVE REFLECTION    ATA CHANGE OF 
CROSS   SECTION 

1 ■'■*■ A, - 0. 930 u, - a 400 AA - a a?^ 

(?!•'■** ^ - G4002 
Ai 

At - /. ÖÖ^? U2- 0.5000 

A«    -  0. fÖ3ö 
A,* 

K, « 0.0273 K4 "0.0/09 ±\*0.fÖ95 
Ar 

A,* - 0. 996/ Ui»- 0.3250 
A4 

A4 - Ö. ?d5h U4- 0.3203 

bl? '0.0/07 A. -• 1.004^ 
0 

U5 '0.4156 Us = 0.4/20 
AB 

AB* 
K8 -0.0277 ^•O.Otff & • 0.97*6 

AB* 

A? ■ /• 02// 
A3 

^=0974/ u3 = 0 5209 

A A; -A3 -4,- -ö ö^i'^ A Ai »   ^i " ^ 
ß 

~-0. 0042 

Lk"*0.0/9O ^~I.004G Us '0.4/53 U? - 0.4/34 
A» 

A^ - 0. 963* 
As 

K9 « ß ^dC? K3 -0.403 
AB* 

A*-A 02/7 U3 « ö 5"2dö ^*0.?f43 U5 = Ä 3"^£> 

AA;- 6-^-- -O.OO57 = -0.004-2. 

Rmsu/t:     A A' - -0.005,        A A"- Äd?/9 

Fig.     II 

.*_4* 



ILLUSTRATION FOR THE EXISTENCE THEOREM 
OF THE CHARACTERISTICS THEORY 

Fig.   12 


